top of page

1. Energy Storage 

LiBs have become prevalent in modern day life due to their input in revolutionising the portable electronics market. However, there is a drive to increase the use renewable energy, such as wind and solar but their intermittent nature has identified a underpinning materials challenge. Current LiBs are not fit for purpose due to capacity, stability and Li dendritic growth issues. Hence, solid state batteries are of great interest as they should address the solid electrolyte interface (SEI) formation that reduces capacity and increases Li dendritic growth. 

​

The group has two avenues of focus:

                 a) Solid State electrolyte materials

                 b) electrode/electrolyte interfaces

 

​

​

​

​

​

​

​

 

 

 

2. Nuclear Materials

The main aim of this project is to develop models for High Entropy Alloys (HEAs) from ab initio and use the models to investigate the mechanical and thermal properties of specific HEAs that are part of an associated experimental programme. HEAs are novel alloys where no single element dominates and four or more elements are used in near equal atomic ratios. Despite their complex chemistries and unlike metallic glasses, it is expected that they should form solid solutions with simple cubic crystal structures, such as face-centred cubic (FCC) or body-centred cubic (BCC) structures. HEAs are currently the subject of a significant international research effort due to their reported superior mechanical properties compared to conventional alloys, such as exceptional hardness, and high temperature strength and stability. They have therefore excellent potential for nuclear applications provided they do not become active under irradiation. 

The project will concentrate on the investigation of reduced activation HEAs specifically those comprising of Ti, V, Zr, Ta, Cr, W, Fe, Mn, which are being considered by experimental collaborators. 

​

​

 

 

 

 

 

 

 

3. Thin Film Solar Materials

 

New thin-film solar cell materials and a greater understanding of their properties are needed to meet the urgent demand for sustainable, lower-cost and scalable photovoltaics (PV).  One of the main advantages of these inorganic thin-film materials over silicon is that they absorb light more strongly because the optical transition is spatially direct rather than requiring simultaneous absorption or emission of photons. In our group we focus on understanding the effect of chlorine treatment on CdTe thin films. 

​

​

 

 

​

​

​

4. Fuel Cell Materials

In the search for new oxide ion conductors, perovskite, fluorite and apatite type materials have been the focus of most investigations due to their fast oxide ion conducting abilities. Although such materials are promising, many different structural classes remain as yet uninvestigated. The oxygen-rich apatite-type conductors differ from most in that ionic conduction occurs via a faster interstitial mechanism rather than a vacancy mechanism. Fast interstitial oxide conduction is often observed in oxygen excess materials which possess flexible tetrahedral frameworks, such as apatites or melilites.

 

The group focuses on:     

                        a) O - rich materials

                        b) material degradation on exposure to air

​

​

​

​

Collaborators: Prof. Peter R. Slater (Birmingham), Prof. Laurence Hardwick (Liverpool), Dr. Rob Armstrong (St. Andrews), Prof. Serena Corr, Dr. Edmund Cussen (Sheffield), Dr. David Scanlon (UCL)

Prof. Frank Tietz, Dr. Enkhe Dashjav (Jülich) 

Industrial partners: Echion Technologies Ltd., Johnson Matthey Ltd.

​

Grants:

Royal Society Industry Fellowship (2024 - 2026)

Royal Academy of Engineering Industry Fellowship (2022 - 2024; Career break Jun23 - Apr 24))

Royal Society Short Industry Fellowship (2021-2022)

KTP: Echion Technologies, Cambridge (2021)

EPSRC: EP/N001982/1 (2016) and DTP (2021)

INNOVATE-UK: Johnson Matthey, TS/N00941X/1 (2016), TS/R002312/1(2017)

Collaborators: Prof. Peter R. Slater (Birmingham), Dr. Jamieson Christie (Loughborough Materials)

​

Grants:

SuSHY CDT (2018)

Collaborators: Prof. Roger Smith (Loughborough Maths), Prof. Michael Walls (CREST)

​

​

Grants:

EPSRC DTP (2017; 2022)

Collaborators: Prof. Roger Smith (Loughborough Maths), Dr. Amy Gandy (Sheffield), Dr. Ed Pickering (Manchester), Prof. Ashok Arya (BARC, India)

Industrial Partners: Sellafield LtD

​

Grants:

EPSRC ICASE PhD Studentship (2024 - 2028)

EPSRC: EP/S032819/1 (2019 - 2022)

Solid State battery materials
AFM 2021, Nature Comms 2020, CoM 2020, SSI 2020
CdTe
JPCM 2023, NatComms 2021, PRMat 2021, PRSA 2020, JPCM 2019, TSF 2019
LATP_Li_pathway.png
Solid oxide materials
PCCP 2020, JPCC 2018, PCCP 2016
Special Nuclear Materials
PRB 2022; J. Alloys & compds 2022; PCCP 2022
bottom of page